- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Lee, Joonbum (2)
-
Liu, Shu-Yuan (2)
-
Domeyer, Joshua E (1)
-
Domeyer, Joshua_E (1)
-
Kamaraj, Amudha V (1)
-
Kamaraj, Amudha_V (1)
-
Lee, John D (1)
-
Lee, John_D (1)
-
Parker, Jah’inaya (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Extended exposure to reliable automation may lead to overreliance as evidenced by poor responses to auto-mation errors. Individual differences in trust may also influence responses. We investigated how these factors affect response to automation errors in a driving simulator study comprised of stop-controlled and uncon-trolled intersections. Drivers experienced reliable vehicle automation during six drives where they indicated if they felt the automation was going too slow or too fast by pressing the accelerator or brake pedal. Engage-ment via pedal presses did not affect the automation but offered an objective measure of trust in automation. In the final drive, an error occurred where the vehicle failed to stop at a stop-controlled intersection. Drivers’ response to the error was inferred from brake presses. Mixture models showed bimodal response times and revealed that drivers with high trust were less likely to respond to automation errors than drivers with low trust.more » « less
-
Kamaraj, Amudha_V; Lee, Joonbum; Domeyer, Joshua_E; Liu, Shu-Yuan; Lee, John_D (, Human Factors: The Journal of the Human Factors and Ergonomics Society)ObjectiveThis study explores subjective and objective driving style similarity to identify how similarity can be used to develop driver-compatible vehicle automation. BackgroundSimilarity in the ways that interaction partners perform tasks can be measured subjectively, through questionnaires, or objectively by characterizing each agent’s actions. Although subjective measures have advantages in prediction, objective measures are more useful when operationalizing interventions based on these measures. Showing how objective and subjective similarity are related is therefore prudent for aligning future machine performance with human preferences. MethodsA driving simulator study was conducted with stop-and-go scenarios. Participants experienced conservative, moderate, and aggressive automated driving styles and rated the similarity between their own driving style and that of the automation. Objective similarity between the manual and automated driving speed profiles was calculated using three distance measures: dynamic time warping, Euclidean distance, and time alignment measure. Linear mixed effects models were used to examine how different components of the stopping profile and the three objective similarity measures predicted subjective similarity. ResultsObjective similarity using Euclidean distance best predicted subjective similarity. However, this was only observed for participants’ approach to the intersection and not their departure. ConclusionDeveloping driving styles that drivers perceive to be similar to their own is an important step toward driver-compatible automation. In determining what constitutes similarity, it is important to (a) use measures that reflect the driver’s perception of similarity, and (b) understand what elements of the driving style govern subjective similarity.more » « less
An official website of the United States government
